При какой температуре образуется мартенсит отпуска

Опубликовано: 17.09.2024

Термическую обработку, заключающуюся в нагреве закаленной стали до температуры ниже точки называют отпуском.

Структура закаленной стали — мартенсит и остаточный аустенит — являются неравновесными фазами. Переход стали в более устойчивое состояние должен сопровождаться распадом мартенсита и остаточного аустенита с образованием структуры, состоящей из феррита и цементита. Распад этих фаз идет по диффузионному механизму, и поэтому скорость процесса в основном

Рис. 127. Схема возникновения искажений решетки при образовании зародыша карбида внутри кристаллика a-твердого раствора. Решетки карбида и а-фазы связаны между собой (когерентны). Белые кружки — атомы железа, черные — атомы углерода

обусловлена температурой нагрева. Из указанных фаз при нагреве в первую очередь начинает распадаться мартенсит.

Распад мартенсита (первое превращение при отпуске). На первой стадии превращения, протекающего при температуре ниже 200 °С, в кристаллах мартенсита образуются карбиды. На образование частиц этих карбидов углерод расходуется только из участков мартенсита, непосредственно окружающих кристаллы выделившихся карбидов. Концентрация углерода в этих участках резко уменьшается, тогда как более удаленные участки сохраняют исходную концентрацию углерода, полученную после закалки. Таким образом, после нагрева до низких температур (ниже 150 °С) в стали наряду с частицами выделившихся карбидов одновременно присутствуют два -твердых раствора (мартенсита) с более высокой (исходной) и низкой концентрацией углерода.

В связи 6 этим данный тип распада мартенсита называют двухфазным.

При температурах меньше 200 °С скорость диффузии мала, поэтому образующиеся частицы карбидов не увеличиваются, и распад мартенсита сопровождается зарождением новых частиц карбида, обычно на границах кристаллов мартенсита и в местах с повышенной плотностью дефектов.

Выделяющиеся карбидные частицы имеют форму тонких пластинок толщиной несколько атомных слоев и длиной несколько десятков нанометров. Пластинки 8 карбида когерентно связаны с решеткой а-раствора (рис. 127). Вследствие того, что удельные объемы карбида и а-раствора различны, между ними возникают сильные микроискажения кристаллических решеток обеих фаз.

Вторая стадия распада мартенсита протекает при температуре На этой стадии продолжают выделяться карбиды из мартенсита и, следовательно, он обедняется углеродом.

При этих температурах отпуска диффузия углерода возрастает, и кристаллы карбидов укрупняются в результате притока атомов углерода из областей твердого раствора (мартенсита) с повышенной концентрацией углерода. Поэтому в конечном счете концентрация углерода в кристаллах мартенсита оказывается близкой к однородной.

Частицы карбидов, образующиеся при низкотемпературном отпуске, по кристаллографическому строению и составу отличаются от цементита. В мартенсите после низкотемпературного отпуска присутствует гексагональный -карбид вероятно Образование -карбида при отпуске вместо более стабильного цементита объясняется тем, что на границе а-раствора и -карбида сопряжение решеток лучше, а следовательно, поверхностная энергия ниже, чем на границе мартенсита и цементита, и поэтому возникновение критического зародыша этого карбида требует меньшей флуктуации энергии.

При низкотемпературном отпуске легированных сталей не происходит диффузионного перераспределения легирующих элементов и поэтому выделяющиеся частицы карбидов имеют такое же среднее содержание легирующих элементов, как и в мартенсите.

Структуру, образующуюся в результате распада мартенсита при температурах ниже 350 °С, называют отпущенным мартенситом, который отличается от мартенсита закалки меньшей концентрацией в нем углерода и включением дисперсных кристалликов -карбида, когерентно связанных о решеткой мартенсита. Содержание углерода в отпущенном мартенсите определяется температурой и продолжительностью нагрева, а также составом исходного мартенсита. Чем выше температура отпуска, тем меньше содержание углерода, в твердом растворе (мартенсите). С увеличением длительности нагрева при этих температурах сначала наблюдается интенсивное выделение углерода, а затем процесс замедляется и при больших выдержках практически прекращается.

Обеднение раствора углеродом приводит к тому, что степень его тетрагональности постепенно уменьшается и при температуре 300—350 °С становится практически равной единице, как в кубической решетке. Это свидетельствует о том, что количество углерода, остающегося в -твердом растворе (мартенсите), приближается к равновесному. Однако решетка а-раствора остается упругоискаженной и отличается повышенной плотностью дефектов строения. Распад мартенсита при отпуске сопровождается уменьшением объема.

Легирующие элементы оказывают незначительное влияние на распад мартенсита только при температурах ниже При более высоких температурах введение в сталь сильно тормозит процессы распада мартенсита, образования и роста частиц карбидов. Это имеет большое практическое значение. Если в углеродистой и низколегированной стали состояние отпущенного мартенсита, обладающего высокой твердостью, сохраняется лишь до 250—350 °С, то в высоколегированной стали такое состояние сохраняется до и выше.

Превращение остаточного аустенита (второе превращение при отпуске). При отпуске высокоуглеродистых и многих легированных среднеуглеродистых сталей, содержащих повышенное количество остаточного аустенита при температуре 200-300 °С происходит его распад. Механизм распада остаточного аустенита, по-видимому, близок к механизму бейнитного превращения переохлажденного аустенита (см. с. 176). В результате превращения остаточного аустенита образуются те же фазы, т. е. обедненный углеродом мартенсит и частицы карбидов, что и при отпуске закаленного мартенсита при той же температуре, но структурное состояние продуктов распада отличается от состояния продуктов, получаемых при превращении мартенсита.

Большинство легирующих элементов не только увеличивает количество остаточного аустенита в закаленной стали из-за снижения температуры но и повышает температурный интервал его распада при отпуске. В некоторых высоколегированных сталях, например в быстрорежущих, содержащих 25-35 % остаточного аустенита, распад его протекает после отпуска при температуре 500-600 °С.

Снятие внутренних напряжений и карбидное превращение (третье превращение при отпуске). При температуре 350-400 РС полностью завершается процесс выделения углерода из а-раствора (мартенсита), происходит нарушение когерентности и обособление решеток феррита и карбида, связанное с одновременным протеканием карбидного превращения, в результате которого образуется цементит

Кроме того, изменяются размеры и форма карбидных частиц (она приближается к сфероидальной). Наряду с карбидными превращениями при этих температурах отпуска также происходит изменение структуры — полигонизация а-фазы и релаксация макро- и микронапряжений, возникающих при закалке в процессе мартенситного превращения. Образующуюся после отпуска при структуру обычно называют трооститом отпуст.

Коагуляция карбидов. Повышение температуры отпуска до и выше в углеродистых и во многих низко- и среднелегированных сталях не вызывает изменения фазового состава. Однако с повышением температуры изменяется микроструктура; протекает процесс коагуляции и сфероидизации карбидов.

Коагуляция карбидов в процессе отпуска происходит вследствие переноса атомов углерода через -твердый раствор, при этом происходит растворение более мелких и рост более крупных частиц карбидов при обеднении углеродом -твердого раствора (см. с. 60). Структуру стали после высокого отпуска называют сорбитом отпуст.

Частицы карбидов в структуре троостита или сорбита отпуска в отличие от троостита и сорбита, полученных в результате распада переохлажденного аустенита, имеют зернистое, а не пластинчатое

строение. Образование зернистых структур улучшает многие свойства стали. При одинаковой твердости, временном сопротивлении и пластичности сталь с зернистой структурой имеет более высокие значения предела текучести, относительного сужения и ударной вязкости.

В результате коагуляции размер частиц карбидов становится мм, тогда как после отпуска при 400-450 °С он составляет 3-10-5 мм (троостит отпуска). При температурах, близких к точке образуется еще более грубая ферритно-карбидная структура (диаметр карбидных частиц мм), называемая зернистым перлитом (зернистым цементитом).

Легирующие элементы замедляют процесс коагуляции, поэтому после отпуска при одинаковой темперглуре сталь, легированная этими элементами, сохраняет более высокую дисперсность карбидных частиц, соответственно большую прочность. При указанных высоких температурах становится возможной диффузия и легирующих элементов, которая приводит к их перераспределению между ферритом и цементитом. Карбидообразующие элементы диффундируют из феррита в цементит, некарбидообразующие — из цементита в феррит. Обогащение цементита легирующими элементами до предела насыщения приводит к его превращению в специальный карбид который образуется в тех самых местах, где ранее были частицы цементита (превращение «на месте»). Карбиды типа и образуются путем зарождения карбида в твердом растворе с последующим выделением. Это требует перераспределения углерода между твердым раствором и карбидной фазой. Выделение из твердого раствора карбидов нередко вызывает повышение твердости — дисперсное упрочнение.

Влияние отпуска на механические свойства. Распад мартенсита при отпуске влияет на все свойства стали. При низких температурах отпуска (до 200-250 °С) уменьшается склонность стали к хрупкому разрушению. В случае низкотемпературного отпуска твердость закаленной и отпущенной стали мало зависит от содержания в ней легирующих элементов и определяется в основном содержанием углерода в а-растворе (мартенсите). В связи с этим высокоуглеродистые стали, имеющие высокую твердость после закалки, сохраняют ее (более высокое содержание углерода в мартенсите) и после отпуска при температурах до 200-250 °С. Прочность и вязкость стали при низких температурах отпуска несколько возрастает вследствие уменьшения макро- и микронапряжений и изменения структурного состояния. Повышение температуры отпуска от 200—250 до 500-600 °С заметно снижает твердость, временное сопротивление, предел текучести и повышает относительное удлинение, сужение (рис. 128, а) и трещиностойкость

Все легированные стали, особенно содержащие карбидообразующие элементы, после отпуска при одинаковых температурах

Рис. 128. Влияние температуры отпуска на механические свойства закаленной стали с 0,45% С (а) и изменение ударной вязкости легированной стали в зависимости от температуры отпуска и последующей скорости охлаждения (б)

обладают более высокой твердостью, чем углеродистые, что связано с замедлением процесса распада мартенсита, образования и коагуляции карбидов. В сталях, содержащих большое количество таких элементов, как хром, вольфрам или молибден, в результате отпуска при высоких температурах (500-600 °С) наблюдается даже повышение твердости, связанное с выделением в мартенсите частиц специальных карбидов, повышающих сопротивление пластической деформации (дисперсное упрочнение).

Хрупкость при отпуске легированных сталей. При отпуске (250—400 и 500-550 °С) некоторых легированных сталей снижается ударная вязкость. Такое снижение вязкости получило название отпускной хрупкости.

В легированной стали могут возникнуть два вида отпускной хрупкости (рис. 128, б).

Первый вид отпускной хрупкости, называемой необратимой отпускной хрупкостью, или хрупкостью I рода, наблюдается в результате отпуска при 250-400 °С. Этот вид хрупкости присущ в той или другой мере всем сталям. Отличительной особенностью хрупкости I рода является ее необратимый характер; повторный отпуск при той же температуре не улучшает вязкости. Хрупкость этого вида устраняется нагревом до температуры свыше 400 °С, снижающим, однако, твердость. Последующий нагрев при 250 — 400 °С не снижает ударную вязкость.

Сталь в состоянии необратимой отпускной хрупкости имеет блестящий межкристаллитный излом. Хрупкое состояние обусловлено возникновением объемно-напряженного состояния, получающегося при неоднородном распаде мартенсита. В связи с этим

отпуск в области температур наиболее интенсивного развития хрупкости I рода не проводят.

Второй вид отпускной хрупкости, называемой обратимой отпускной хрупкостью, или хрупкостью II рода, наблюдается в некоторых сталях определенной легированности, если они медленно охлаждаются (в печи или даже на воздухе) после отпуска при 500-550 °С. При развитии хрупкости II рода происходит сильное уменьшение ударной вязкости и, что самое главное, повышение порога хладноломкости. В стали в состоянии хрупкости

II рода уменьшаются работа зарождения трещины и особенно ее распространение. Этот вид хрупкости не возникает, если охлаждение о температуры отпуска проводят быстро, например в воде (см. рис. 128, б). При быстром охлаждении с температур отпуска 500-550 °С излом — волокнистый, характерный для вязкого состояния. После медленного охлаждения получается хрупкий кристаллический излом.

Существенным признаком хрупкоети II рода является ее обратимость. Хрупкость, возникшая в результате медленного охлаждения с 500-550 °С, может быть устранена повторным отпуском при 600-650 °С с последующим быстрым охлаждением. Она может быть вызвана вновь дополнительным отпуском определенной длительности при 500-550 °С.

Хрупкость II рода наиболее часто наблюдается в сталях, содержащих повышенное количество фосфора, марганца, кремния, хрома или же при одновременном введении в сталь хрома и никеля или марганца. Введение в сталь молибдена или вольфрама в небольшом количестве или значительно уменьшает склонность ее к отпускной хрупкости.

Появление хрупкости II рода наиболее вероятно связано с диффузией растворенных атомов некоторых элементов к границе зерна и насыщением поверхностных слоев зерна этими элементами без выделения избыточных мелкодисперсных фаз (карбидов, фосфидов и т. д.). Особенно значительное влияние оказывает обогащение пограничных зон фосфором, снижающим работу образования межзеренных трещин, что приводит к развитию отпускной хрупкости. Легирующие элементы хром, марганец, никель повышают содержание фосфора в приграничнвгх объемах, а молибден и вольфрам, наоборот, снижают, уменьшая склонность к отпускной хрупкоети.

Под этим термином понимают завершённый полиморфный процесс преобразования внутренней структуры различных видов сталей. Именно преобразование кристаллической решётки и превращение её в игольчатую структуру получало название мартенсит. Подобные деформации приводят к изменениям свойства конкретной марки стали. Мартенситная сталь составляет основу многих марок стали, в которых требуется улучшить физические и механические характеристики. Например, отпущенный мартенсит значительно увеличивает пластичность готовой стали.

Мартенсит

Структура мартенсита

Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.

Структура кристаллической решетки

Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.

  1. При повышении содержания углерода до 6,7% возникает материал называемый цементит. Он имеет решётку в форме ромба.
  2. При низком содержании углерода (не более 0,02%) формируется феррит. Его решётка приобретает объёмно-центрированную форму.
  3. Аустенит. Структура железоуглеродистых сплавов, представляющих смесь углерода в количестве около 2% различных легирующих добавок. Кристаллическая решётка этого материала имеет форму куба со строго центрированными гранями. Отличительной особенностью аустенита является его высокая плотность по сравнению с другими структурами стали. Он образуется при температуре нагрева от 910 до 1401 °С и сохраняет свою устойчивость до температуры 723 °С. При дальнейшем охлаждении превращается в другие более устойчивые структуры. При добавлении никеля, марганца или хрома аустенит сохраняет свою структуру вплоть до комнатной температуры. К сталям, имеющим аустенитную структуру, относятся почти все хромоникелевые стали.
  4. Перлит является механической смесью цементита и феррита. В этой смеси присутствие углерода составляет 0,8%. Он образуется из аустенита в процессе охлаждения. Он является эвтектоидом и может обладать пластичной или зернистой структурой. От этого состояния зависят его физические и особенно механические свойства.
  5. При повышении содержания углерода до 4,3% из смеси аустенита и цементита образуется материал, называемый ледебурит. Его формирование происходит при температуре расплава в 1147 °С.
  6. Мартенсит – это перенасыщенный раствор железа и углерода. Его обычно получают при закалке аустенита. В результате температурного воздействия мартенситный материал приобретает из кубической тетрагональную решётку, которая придаёт ему твердость до 1000 HV.

График превращения аустенита в мартенсит

В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии

Свойства мартенсита

В зависимости от методов обработки мартенсит подразделяется на несколько категорий:

  • обычный;
  • термоупругий;
  • пакетный;
  • деформационный;
  • гексагональный или 8-мартенсит;
  • пластинчатый.

Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.

Схема структурных превращений при нагреве

К основным свойствам мартенситных сталей относится:

  • повышенная устойчивость к воздействию агрессивных растворов (кислотных или щелочных);
  • антикоррозийная стойкость к повышенному содержанию влаги;
  • высокая жаропрочность (особенно после проведения процедуры закалки);
  • способность к так называемому самозакаливанию;
  • повышенные показатели прочности (твёрдость мартенсита превосходит многие марки сталей);
  • устойчивость к вредному воздействию водорода;
  • невысокая пластичность;
  • трудности в обработке.

Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.

Мартенситное превращение

Данный процесс протекает в стали при высоких скоростях охлаждения. Оно должно быть непрерывным в течение всей процедуры. Мартенситное превращение в стали основано на полиморфном превращении двух аллотропических модификациях железа (альфа-железа Fea и гамма-железа Feg). Обладая температурным полиморфизмом, оба эти вида железа имеют свои кристаллические решётки. Первое формируется в объёмно-центрированную кубическую решётку. Второе в гранецентрированную кубическую решётку. При нагреве стали до 911 °С вплоть до температуры плавления 1593 °С наблюдается устойчивость альфа-железа. При охлаждении со скоростью, превышающей критическую, проявляется эффект преобразования. В этот период аустенит превращается в мартенсит. Механизм этого процесса обладает следующими особенностями:

  1. Бездиффузионный характер проявляется благодаря существующему сдвиговому механизму. Благодаря ему атомы кристаллической решётки смещаются на небольшое расстояние, которое по величине меньше межатомных связей. Происходит изменение формы кристаллической решётки. Самодиффузии атомов железа не происходит.
  2. Образовавшиеся кристаллы мартенсита приобретают геометрическую форму пластин. К краю пластины наблюдается уменьшение линейного размера. Поэтому мартенситная структура кристаллов называется игольчатая. Процесс образования пластины заканчивается в двух случаях: на границе зерна аустенита, или при её изломе. Последующие пластины будут образовываться под углом 60° или 120°. Такое образование называется когерентный рост, который протекает при минимальной поверхностной энергии. Однако из-за различия структуры и объёма аустенита и мартенсита в стали наблюдается возникновение больших напряжений. Они достигают величины предела текучести аустенита. Это приводит к отрыву решётки мартенсита от решётки аустенита и когерентность нарушается, что приводит к остановке роста кристаллов.
  3. Абсолютные смещения атомов при мартенситном превращении могут достигать относительно больших размеров в межатомных связях (по сравнению с макроскопическими размерами). Это является следствием действия сдвигового механизма. Происходит изменение формы аустенита и образования на поверхности характерной игольчатой структуры.
  4. Несмотря на разницу кристаллических решёток мартенсита и аустенита, между ними существует некоторое кристаллическое соответствие. Оно выражается в ориентационном сходстве.
  5. Наиболее часто встречающейся формой кристалла после мартенситного преобразования является пластина или так называемая линза. Толщина каждой из них сравнима с остальными геометрическими размерами, сохраняя сложное внутреннее строение. Полученная форма мартенситного кристалла при превращении сохраняет минимум упругой энергии.
  6. Процесс образования кристаллов протекает при очень высоких скоростях. Она может достигать 1000 м/с. По результатам проведенных оценок время формирования кристаллов при мартенситном превращении не превышает 10 -7 секунды. Это усложняет процесс контроля над образованием мартенсита.
  7. Сам процесс мартенситного превращения протекает только при быстром непрерывном охлаждении. Температура мартенситного превращения зависит от марки стали (то есть её состава). Температуру начала образования мартенсита обозначают индексом Мн, а температуру конца Мк. Этот температурный интервал в основном зависит от количества, содержащегося в стали углерода. Он не зависит от скорости процесса охлаждения.

Процесс мартенситного превращения не заканчивается полным образованием мартенсита. В стали остаётся остаточный аустенит. Его количество повышается при снижении точки начала превращения.

Область применения

Обладая специфическими, а в некоторых случаях уникальными свойствами стали мартенситной группы применяются для изготовления деталей, работающих в сложных технических и химических условиях. Из них изготавливают:

  • элементы газовых и паровых турбин (в частности роторы, диафрагмы, лопатки и корпуса);
  • детали сварочных аппаратов;
  • сосуды высокого давления, которые должны выдерживать 16 МПа;
  • комплектующие насосов высоко давления;
  • пружины способные выдерживать большие нагрузки;
  • отдельные детали котлов, трубопроводов, коллекторов по которым проходит жидкость с высокой температурой или пар;
  • инструменты различного назначения (режущие, измерительные, обрабатывающие);
  • медицинские инструменты и отдельные части оборудования.

Фазы мартенсита на примере

Основными недостатками таких сталей являются: трудности, возникающие при механической обработке и сварке отдельных деталей. Для решения второй задачи необходимо создавать специальные условия для сварки.

Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.


Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.

  1. При повышении содержания углерода до 6,7% возникает материал называемый цементит. Он имеет решётку в форме ромба.
  2. При низком содержании углерода (не более 0,02%) формируется феррит. Его решётка приобретает объёмно-центрированную форму.
  3. Аустенит. Структура железоуглеродистых сплавов, представляющих смесь углерода в количестве около 2% различных легирующих добавок. Кристаллическая решётка этого материала имеет форму куба со строго центрированными гранями. Отличительной особенностью аустенита является его высокая плотность по сравнению с другими структурами стали. Он образуется при температуре нагрева от 910 до 1401 °С и сохраняет свою устойчивость до температуры 723 °С. При дальнейшем охлаждении превращается в другие более устойчивые структуры. При добавлении никеля, марганца или хрома аустенит сохраняет свою структуру вплоть до комнатной температуры. К сталям, имеющим аустенитную структуру, относятся почти все хромоникелевые стали.
  4. Перлит является механической смесью цементита и феррита. В этой смеси присутствие углерода составляет 0,8%. Он образуется из аустенита в процессе охлаждения. Он является эвтектоидом и может обладать пластичной или зернистой структурой. От этого состояния зависят его физические и особенно механические свойства.
  5. При повышении содержания углерода до 4,3% из смеси аустенита и цементита образуется материал, называемый ледебурит. Его формирование происходит при температуре расплава в 1147 °С.
  6. Мартенсит – это перенасыщенный раствор железа и углерода. Его обычно получают при закалке аустенита. В результате температурного воздействия мартенситный материал приобретает из кубической тетрагональную решётку, которая придаёт ему твердость до 1000 HV.


В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии

Общие сведения о мартенсите

Структура на основе перенасыщенного твердого раствора углерода в железе называется мартенсит. Получается он методом переохлаждения аустенитной фазы. Другими словами, мартенсит – результат проведения закаливания сталей с содержанием углерода выше 0,3%. Кристаллы мартенсита имеют тетрагональную структуру, где атомы железа занимают место в узлах решетки.

На вид мартенсит представляет собой множественные темные иглы железа на светлом фоне. Угол наклона данных игл в среднем составляет 60 градусов относительно друг друга. Обнаружить следы углерода на поверхности мартенсита невозможно, т. к. он полностью находится в растворенном состоянии.

структура мартенсита

Мартенсит выделяется прочностью по сравнению с остальными фазами. Механические свойства до определенного момента в прямой зависимости от количества углерода в стали. Но стоит заметить, что после прохождения определенной отметки прочность падает, и начинает повышаться хрупкость.

Согласно исследованиям, проводимым в 30-х годах прошлого столетия советскими учеными, причины высоких механических характеристик мартенсита кроются в следующем:

  • Структура мартенсита имеет блочный характер, при том что сами блоки обладают достаточно малыми размерами.
  • Сопротивление статическим искажениям, что означает устойчивость положения атомов при их смещении от идеального размещения атомов в кристаллической решетке.
  • В случае воздействия механических нагрузок, и как следствие пластической деформации, выделяются мельчайшие твердые частицы, блокирующие скольжение слоев относительно друг друга и повышающие твердость сплава.

Твердость мартенсита имеет валатильный характер и зависит от температуры нагрева, охлаждения и времени выдержки стали. В среднем ее значение колеблется в пределах 35 — 70 единиц по шкале Роквелла. Также мартенсит выделяется большим удельным объемом. Его значение выше по сравнению с другими фазовыми структурами такими как аустенит, перлит и т. д.

Как следствие от всего вышесказанного, образование мартенсита сопровождается значительными изменениями стали в объеме. Это, в свою очередь, приводит к нежелательному повышению внутренней напряженности в структуре, которая в будущем может стать причиной появления трещин.

Свойства мартенсита

В зависимости от методов обработки мартенсит подразделяется на несколько категорий:

  • обычный;
  • термоупругий;
  • пакетный;
  • деформационный;
  • гексагональный или 8-мартенсит;
  • пластинчатый.

Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.


К основным свойствам мартенситных сталей относится:

  • повышенная устойчивость к воздействию агрессивных растворов (кислотных или щелочных);
  • антикоррозийная стойкость к повышенному содержанию влаги;
  • высокая жаропрочность (особенно после проведения процедуры закалки);
  • способность к так называемому самозакаливанию;
  • повышенные показатели прочности (твёрдость мартенсита превосходит многие марки сталей);
  • устойчивость к вредному воздействию водорода;
  • невысокая пластичность;
  • трудности в обработке.

Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.

Особенности образования

Аустенит – это структура, которая формируется в процессе нагревания стали. При достижении критической температуры перлит и феррит образуют целостное вещество.

  1. Равномерное, до достижения необходимого значения, непродолжительная выдержка, охлаждение. В зависимости от характеристик сплава, аустенит может быть как полностью сформирован, так и частично.
  2. Медленное повышение температуры, длительный период поддержания достигнутого уровня теплоты с целью получения чистого аустенита.

Свойства полученного разогретого материала, а также того, который будет иметь место в результате охлаждения. Очень многое зависит от уровня достигнутого тепла. Важно не допустить перегрев или перепал.

Мартенситное превращение

Данный процесс протекает в стали при высоких скоростях охлаждения. Оно должно быть непрерывным в течение всей процедуры. Мартенситное превращение в стали основано на полиморфном превращении двух аллотропических модификациях железа (альфа-железа Fea и гамма-железа Feg). Обладая температурным полиморфизмом, оба эти вида железа имеют свои кристаллические решётки. Первое формируется в объёмно-центрированную кубическую решётку. Второе в гранецентрированную кубическую решётку. При нагреве стали до 911 °С вплоть до температуры плавления 1593 °С наблюдается устойчивость альфа-железа. При охлаждении со скоростью, превышающей критическую, проявляется эффект преобразования. В этот период аустенит превращается в мартенсит. Механизм этого процесса обладает следующими особенностями:

  1. Бездиффузионный характер проявляется благодаря существующему сдвиговому механизму. Благодаря ему атомы кристаллической решётки смещаются на небольшое расстояние, которое по величине меньше межатомных связей. Происходит изменение формы кристаллической решётки. Самодиффузии атомов железа не происходит.
  2. Образовавшиеся кристаллы мартенсита приобретают геометрическую форму пластин. К краю пластины наблюдается уменьшение линейного размера. Поэтому мартенситная структура кристаллов называется игольчатая. Процесс образования пластины заканчивается в двух случаях: на границе зерна аустенита, или при её изломе. Последующие пластины будут образовываться под углом 60° или 120°. Такое образование называется когерентный рост, который протекает при минимальной поверхностной энергии. Однако из-за различия структуры и объёма аустенита и мартенсита в стали наблюдается возникновение больших напряжений. Они достигают величины предела текучести аустенита. Это приводит к отрыву решётки мартенсита от решётки аустенита и когерентность нарушается, что приводит к остановке роста кристаллов.
  3. Абсолютные смещения атомов при мартенситном превращении могут достигать относительно больших размеров в межатомных связях (по сравнению с макроскопическими размерами). Это является следствием действия сдвигового механизма. Происходит изменение формы аустенита и образования на поверхности характерной игольчатой структуры.
  4. Несмотря на разницу кристаллических решёток мартенсита и аустенита, между ними существует некоторое кристаллическое соответствие. Оно выражается в ориентационном сходстве.
  5. Наиболее часто встречающейся формой кристалла после мартенситного преобразования является пластина или так называемая линза. Толщина каждой из них сравнима с остальными геометрическими размерами, сохраняя сложное внутреннее строение. Полученная форма мартенситного кристалла при превращении сохраняет минимум упругой энергии.
  6. Процесс образования кристаллов протекает при очень высоких скоростях. Она может достигать 1000 м/с. По результатам проведенных оценок время формирования кристаллов при мартенситном превращении не превышает 10-7 секунды. Это усложняет процесс контроля над образованием мартенсита.
  7. Сам процесс мартенситного превращения протекает только при быстром непрерывном охлаждении. Температура мартенситного превращения зависит от марки стали (то есть её состава). Температуру начала образования мартенсита обозначают индексом Мн, а температуру конца Мк. Этот температурный интервал в основном зависит от количества, содержащегося в стали углерода. Он не зависит от скорости процесса охлаждения.

Процесс мартенситного превращения не заканчивается полным образованием мартенсита. В стали остаётся остаточный аустенит. Его количество повышается при снижении точки начала превращения.

Влияние закалки на особенности распада аустенита. Мартенсит

Закалка – это вид термической обработки, суть которого заключается в быстром нагревании до высоких температур выше критических точек Ac3 и Acm, после чего следует быстрое охлаждение. Если снижение температуры происходит с помощью воды со скоростью больше 200˚С за секунду, то образуется твердая игольчатая фаза, имеющая название мартенсит.

Он являет собой пересыщенный твердый раствор проникновения карбона в железо с кристаллической решеткой типа α. Вследствие мощных перемещений атомов она искажается и формирует тетрагональную решетку, что и выступает причиной упрочнения. Сформированная структура имеет больший объем. В результате этого кристаллы, ограниченные плоскостью, сжимаются, зарождаются игольчатые пластины.

Мартенсит – прочный и очень твердый (700-750 НВ). Образуется исключительно в результате высокоскоростной закалки.

Область применения

Обладая специфическими, а в некоторых случаях уникальными свойствами стали мартенситной группы применяются для изготовления деталей, работающих в сложных технических и химических условиях. Из них изготавливают:

  • элементы газовых и паровых турбин (в частности роторы, диафрагмы, лопатки и корпуса);
  • детали сварочных аппаратов;
  • сосуды высокого давления, которые должны выдерживать 16 МПа;
  • комплектующие насосов высоко давления;
  • пружины способные выдерживать большие нагрузки;
  • отдельные детали котлов, трубопроводов, коллекторов по которым проходит жидкость с высокой температурой или пар;
  • инструменты различного назначения (режущие, измерительные, обрабатывающие);
  • медицинские инструменты и отдельные части оборудования.


Основными недостатками таких сталей являются: трудности, возникающие при механической обработке и сварке отдельных деталей. Для решения второй задачи необходимо создавать специальные условия для сварки.

Закалка. Диффузионные структуры

Аустенит – это формирование, из которого могут быть искусственно произведены бейнит, троостит, сорбит и перлит. Если охлаждение закалки происходит на меньших скоростях, осуществляются диффузионные превращения, их механизм описан выше.

Троостит – это перлит, для которого характерна высокая степень дисперсности. Формируется при уменьшении тепла 100˚С за секунду. Большое количество мелких зерен феррита и цементита распределяется по всей плоскости. «Закаленному» свойственен цементит пластинчатой формы, а троостит, полученный в результате последующего отпуска, имеет зернистую визуализацию. Твердость – 600-650 НВ.

Бейнит – это промежуточная фаза, которая являет собой еще более дисперсную смесь кристаллов высокоуглеродистого феррита и цементита. По механическим и технологическим свойствам уступает мартенситу, но превышает троостит. Образуется в температурных интервалах, когда диффузия невозможна, а силы сжатия и перемещения кристаллической структуры для превращения в мартенситную – недостаточно.

Сорбит – крупнодисперсная иглообразная разновидность перлитных фаз при охлаждении со скоростью 10˚С за секунду. Механичесие свойства занимают промежуточное положение между перлитом и трооститом.

Перлит – это совокупность зерен феррита и цементита, которые могут быть зернистой или пластинчатой формы. Формируется в результате плавного распада аустенита со скоростью охлаждения 1˚С за секунду.

Бейтит и троостит – более относятся к закалочным структурам, тогда как сорбит и перлит могут формироваться и при отпуске, отжиге и нормализации, особенности которых определяют форму зерен и их размер.

Физический механизм образования мартенсита принципиально отличается от механизма других процессов, происходящих в стали при нагреве и охлаждении. Другие процессы диффузионны, то есть атомы перемещаются с малой скоростью, например, при медленном охлаждении аустенита создаются зародыши кристаллов феррита и цементита, к ним в результате диффузии пристраиваются дополнительные атомы и, наконец, весь объём приобретает перлитную или феррито-перлитную структуру. Мартенситное превращение бездиффузионно (сдвиговое превращение), атомы перемещаются с большой скоростью по сдвиговому механизму, скорость распространения порядка тысячи метров в секунду.

Мартенситное превращение[ | ]

Основная статья: Мартенситное превращение

Мартенситное превращение при охлаждении происходит не при постоянной температуре, а в определённом интервале температур, при этом превращение начинается не при температуре распада аустенита в равновесных условиях, а несколькими сотнями градусов ниже. Оканчивается превращение при температуре значительно ниже комнатной. Таким образом, в интервале температур мартенситного превращения в структуре стали, наряду с мартенситом, есть и остаточный аустенит. Температуры как начала, так и окончания мартенситного превращения могут сильно зависеть от концентраций легирующих элементов.

При пластической деформации стали при температурах мартенситного превращения количество мартенсита увеличивается. В некоторых случаях также влияет упругая деформация. Возможно превращение аустенита в мартенсит при комнатных температурах под действием пластической деформации.

Кроме железоуглеродистых сплавов, мартенситное превращение наблюдается и в некоторых других материалах, например, сплавах на основе титана (сплавы типа ВТ6, ВТ8, ВТ14), меди (бронзы типа БрАМц 9-3), материалах с памятью формы, оксидных материалах (ZrO2).

Шпаргалки по материаловедению - Четвертое основное превращение (превращение мартенсита при отпуске)

Четвертое основное превращение (превращение мартенсита при отпуске).

Имеет место при нагреве закаленных сталей. Превращение связано с диффузией углерода.

Мартенсит закалки неравновесная структура, сохраняющаяся при низких температурах. Для получения равновесной структуры изделия подвергают отпуску.

При нагреве закаленной стали происходят следующие процессы.

При нагреве до 200 o С происходит перераспределение углерода в мартенсите. Образуются пластинки – карбидов толщиной несколько атомных диаметров. На образование карбидов углерод расходуется только из участков мартенсита, окружающих кристаллы выделившихся карбидов. Концентрация углерода на этих участках резко падает, тогда как удаленные участки сохраняют концентрацию углерода. В стали присутсвуют карбиды и два -твердых раствора мартенсита (с высокой и низкой концентрацией углерода. Такой тип распада мартенсита называется прерывистым. Скорость диффузии мала, карбиды не увеличиваются, распад мартенсита сопровождается зарождением новых карбидных частиц. Таким образом имеем структуру с неравномерным распределением углерода – это мартенсит отпуска . При этом несколько снижается тетрагональность решетки.

При нагреве до 300 o С идет рост образовавшихся карбидов. Карбиды выделяются из мартенсита и он обедняется углеродом. Диффузия углерода увеличивается и карбиды растут в результате притока углерода из областей твердого раствора с высокой его концентрацией. Кристаллическая решетка карбидов когерентно связана с решеткой мартенсита.

В высокоуглеродистых сталях аустенит остаточный превращается в мартенсит отпуска. Наблюдается снижение тетрагональности решетки и внутренних напряжений. Структура – мартенсит отпуска:

При нагреве до 400 o С весь избыточный углерод выделяется из . Карбидные частицы полностью обособляются, приобретают строение цементита, и начинают расти. Форма карбидных частиц приближается к сферической.

Высокодисперсная смесь феррита и цементита называется троостит отпуска;

При нагреве выше 400 o С изменение фазового состава не происходит, изменяется только микроструктура. Имеет место рост и сфероидизация цементита. Наблюдается растворение мелких и рост крупных карбидных частиц.

При температуре 550…600 o С имеем сорбит отпуска. Карбиды имеют зернистое строение. Улучшаются свойства стали.

При температуре 650…700 o С получают более грубую ферритно- цементитную смесь – перлит отпуска (зернистый перлит).

Билет №24 . Виды термической обработки стали.

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств (представляется в виде графика в осях температура – время, см. рис. 12.1 ).

Рис.12.1. Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Различают следующие виды термической обработки:

1. Отжиг 1 рода – возможен для любых металлов и сплавов.

Его проведение не обусловлено фазовыми превращениями в твердом состоянии.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения.

Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

· отжиг для снятия напряжения после ковки, сварки, литья.

2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Проводят отжиг второго рода с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).

Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей.

Характеризуется нагревом до температуры ниже критической А (рис. 12.1 (3)). Скорость охлаждения роли не играет. Происходят превращения, уменьшающие степень неравновесности структуры закаленной стали.

Термическую обработку подразделяют на предварительную и окончательную.

Предварительная – применяется для подготовки структуры и свойств материала для последующих технологических операций (для обработки давлением, улучшения обрабатываемости резанием).

Отпуск - это процесс термической обработки, заключающийся в нагреве закаленной стали до температур ниже точки Ас1, c целью получения равновесной структуры и заданного комплекса механических свойств.

Содержание

После закалки сталь имеет структуру на основе мартенсита с тетрагональной искаженной кристаллической решеткой и остаточного аустенита, количество которого зависит от химического состава стали. При нагреве закаленной стали в ее структуре происходят фазовые превращения, которые можно показать в виде схемы.

Схема фазовых превращений при отпуске сталей

Схема фазовых превращений при отпуске сталей

Низкий отпуск сталей

Низкий отпуск стали делают при температуре до 250°С. При этом процессе из мартенсита выделяется часть избыточного углерода с образованием мельчайших карбидных частиц (ε-карбидов). ε-карбиды выделяются в виде пластин или стержней и они когерентно связаны с решеткой мартенсита. Распад остаточного аустенита при низком отпуске происходит по механизму бейнитного превращения: образуется гетерогенная смесь кристаллов низкоуглеродистого мартенсита и дисперсных карбидов. Продуктом низкого отпуска является мартенсит отпуска, который отличается от мартенсита закалки меньшей концентрацией углерода и наличием в нем карбидов (ε-карбидов), которые когерентно связаны с решеткой мартенсита.

При температуре около 250°С начинается превращение карбида в цементит; при этом когерентность решеток α-твердого раствора мартенсита и карбидов нарушается.

Низкому отпуску подвергают инструментальные железоуглеродистые материалы (режущий и мерительный инструмент), а также стали, которые подвергались цементации, нитроцементации. Часто низкий отпуск делают для сталей после термообработки токами высокой частоты.

Средний отпуск

Средний отпуск проводится при температурах 350–400 °С. При этом из мартенсита выделяется весь избыточный углерод с образованием цементитных частиц. Тетрагональность (степень тетрагональности) решетки железа уменьшается, она становится кубической. В результате вместо мартенсита остается феррит. Такая феррито-цементитная смесь называется трооститом отпуска, а процесс, приводящий к таким изменениям, среднетемпературным отпуском. При среднем отпуске снижается плотность дислокаций и уменьшаются внутренние напряжения в стали.

Средний отпуск применяется при термообработке упругих деталей: рессор, пружин и др.

Высокий отпуск

Во время высокого отпуск (450-550°С и выше) в углеродистых сталях происходят изменения структуры, не связанные с фазовыми превращениями: изменяются форма, размер карбидов и структура феррита. С повышением температуры происходит коагуляция – укрупнение частиц цементита. Форма кристаллов постепенно становится сферической – этот процесс называется сфероидизацией.

Коагуляция и сфероидизация карбидов начинают происходить более интенсивно с температуры 400°С. Зерна феррита становятся крупными, и их форма приближается к равноосной. Феррито-карбидная смесь, которая образуется после отпуска при температуре 400–600 °С, называется сорбитом отпуска. При температуре, близкой к точке А1, образуется достаточно грубая феррито-цементитная смесь – перлит.

Высокий отпуск с температур 450-550°С применяется для большинства конструкционных сталей. Его широко используют при термообработке различных втулок, опор, крепежных изделий, работающих на растяжение-сжатие и других изделий, которые испытывают статические нагрузки.

Явление отпускной хрупкости

При отпуске некоторых сталей возможно протекание процессов, которые снижают ударную вязкость стали не меняя остальные механические свойства. Такое явление называется отпускной хрупкостью и наблюдается в температурных интервалах отпуска при 250–400ºС и 500–550ºС. Первый вид хрупкости называется отпускной хрупкостью Ι рода и является необратимым, поэтому стоит избегать отпуска сталей при этих температурах. Данный вид присущ практически всем сталям, легированным хромом, магнием, никелем и их сочетанием, и обусловлен неоднородным выделением карбидов из мартенсита. Второй вид отпускной хрупкости - отпускная хрупкость ΙΙ-го рода является обратимым. Отпускная хрупкость ΙΙ-го рода проявляется при медленном охлаждении легированной стали при температуре 500–550°С. Данная хрупкость может быть устранена повторным отпуском с большой скоростью охлаждения (в воде или масле). В этом случае устраняется причина этой хрупкости – выделение карбидов, нитридов, фосфидов по границам бывших аустенитных зерен. Устранение отпускной хрупкости легированных сталей возможно введением в них малых добавок молибдена (0,2–0,3 %) или вольфрама (0,5–0,7 %).

Графически эти виды хрупкости выглядят, как показано на рисунке.

Отпускная хрупкость при отпуске стали

Проявление отпускной хрупкости в сталях при отпуске

Практически все стали подчиняются закону: повышение температуры отпуска — снижение прочностных характеристик и повышение пластических, как показано на рисунке ниже.

Влияние температуры отпуска на механические свойства стали

Влияние температуры отпуска на механические свойства стали

Такая закономерность не касается быстрорежущих инструментальных легированных карбидообразующими элементами сталей.

Отпуск быстрорежущих инструментальных сталей

Основными легирующими элементами быстрорежущих сталей (Р18, Р6М5 и др.) являются вольфрам, молибден, кобальт и ванадий — элементы, обеспечивающие теплостойкость и износостойкость при эксплуатации. Быстрорежущие стали относятся к карбидному (ледебуритному) классу. Под закалку эти стали нагревают до температуры выше 1200°С (Р18 до температуры 1270°С, Р6М5 — до 1220°С). Высокие температуры закалки необходимы для более полного растворения вторичных карбидов и получения аустенита высоколегированного хромом, молибденом, вольфрамом, ванадием. Это обеспечивает получение после закалки теплостойкого мартенсита. Даже при очень высоком нагреве растворяется только часть карбидов. Для этих сталей характерно сохранение мелкого зерна при высоких температурах нагрева.

Железо и легирующие элементы "быстрорезов" имеют сильно отличающиеся свойства теплопроводности, поэтому при нагреве, для избежания трещин, следует делать температурные остановки. Обычно при 800 и 1050°С. При нагреве крупного инструмента первую выдержку делают при 600°С. Время выдержки составляет 5-20 мин. Выдержка при температуре закалки должна обеспечить растворение карбидов в пределе их возможной растворимости. Охлаждение инструмента чаще всего делают в масле. Для уменьшения деформации применяют ступенчатую закалку в расплавах солей с температурой 400-500°С. Структура "быстрорезов" после закалки состоит из высоколегированного мартенсита, содержащего 0,3-0,4%С, нерастворенных избыточных карбидов и остаточного аустенита. Чем выше температура закалки, тем ниже положение точек Мн, Мк и тем больше остаточного аустенита. В стали Р18 присутствует примерно 25-30% остаточного аустенита, в стали Р6М5 — 28-34%. Для уменьшения аустенита можно сделать обработку холодом, но как правило этого не требуется.

После закалки следует отпуск при 550 — 570°С, вызывающий превращение остаточного аустенита в мартенсит и дисперсионное твердение за счет частичного распада мартенсита и выделения дисперсных карбидов легирующих элементов. Это сопровождается увеличением твердости (вторичная твердость). В процессе выдержки при отпуске из остаточного аустенита выделяются карбиды, что уменьшает его легированность, и поэтому при последующем охлаждении он претерпевает мартенситное превращение (Мн

150°С). В процессе однократного отпуска только часть остаточного аустенита превращается в мартенсит. Чтобы весь аустенит перешел в мартенсит применяют двух и трехкратный отпуск. Время выдержки обычно составляет 60 минут.
При назначении режима нужно учитывать химические свойства элементов и периодичность выделения карбидов в зависимости от температуры. Например максимальная твердость стали Р6М5 получается за счет 3-х стадийного отпуска. Первый отпуск при температуре 350°С, последующие два при температуре 560-570°С. При температуре 350°С выделяются частицы цементита, равномерно распределенные в стали. Это способствует однородному выделению и распределению спецкарбидов М6С при температуре 560-570°С.

Читайте также: