Плюсы и минусы работы аэс

Опубликовано: 17.09.2024

aes40000

Атомная энергетика в основном ассоциируется с Чернобыльской катастрофой, случившейся в 1986 году. Тогда весь мир был потрясен последствиями взрыва атомного реактора, в результате чего тысячи людей получили серьезные проблемы со здоровьем или погибли. Тысячи гектаров загрязненной территории, на которой нельзя жить, работать и выращивать урожай или же экологический способ добывания энергии, который станет шагом в светлое будущее для миллионов людей?

Плюсы атомной энергетики

АЭС

Строительство атомных электростанций остается прибыльными за счет минимальных расходов на производство энергии. Как известно для работы ТЭС нужен уголь, причем ежедневно его расход составляет около миллиона тонн. К себестоимости угля добавляются расходы на транспортировку топлива, что также стоит немало. Что же касается АЭС это обогащенный уран, в связи с чем происходит экономия и на расходы на транспортировку топлива и на его покупку.

Также нельзя не отметить экологичность работы АЭС, ведь долгое время считалось, что именно атомная энергетика положит конец загрязнению окружающей среды. Города, которые строятся вокруг атомных станций, экологически чистые, так как работа реакторов не сопровождается постоянным выбросом вредных веществ в атмосферу, к тому же использование ядерного топлива не требует кислорода. Как результат, экологическая катастрофа городов может страдать только от выхлопных газов и работы других промышленных объектов.

Специалист на АЭС

Экономия средств в данном случае происходит и за счет того, что не требуется строить очистные сооружения для уменьшения выбросов продуктов сгорания в окружающую среду. Проблема с загрязнением больших городов на сегодняшний день становится все более актуальной, так как нередко уровень загрязнения в городах, в которых построены ТЭС, превышает в 2 – 2,5 раза критические показатели загрязнения воздуха серой, золовой пыли, альдегидами, оксидами углерода и азотом.

Минусы атомной энергетики

Самым главным минусом атомной энергетики является память о том, как почти 30 лет тому назад на реакторе ЧАЭС, взрыв на котором считался невозможным и практически нереальным, произошла авария, ставшая причиной всемирной трагедии. Случилось так потому что авария коснулась не только СССР, но и всего мира – радиоактивное облако со стороны нынешней Украины пошло сначала в сторону Белоруссии, после Франции, Италии и так достигло США.

Даже мысль о том, что однажды такое может повториться становится причиной того, что множество людей и ученых выступают против строительства новых АЭС. Кстати Чернобыльская катастрофа считается не единственной аварией подобного рода, еще свежи в памяти события аварии в Японии на АЭС Онагава и АЭС Фукусима – 1, на которых в результате мощнейшего землетрясения начался пожар. Он стал причиной расплавления ядерного топлива в реаторе блока № 1, из-за чего началась утечка радиации. Это стало последствием эвакуации населения, которое проживало на расстоянии 10 км от станций.

АЭС «Михама»

Также стоит вспомнить о крупной аварии на АЭС «Михама», когда от раскаленного пара от турбины третьего реактора погибло 4 человека и пострадало свыше 200 человек. Ежедневно по вине человека или в результате действия стихии возможны аварии на АЭС, в результате чего радиоактивные отходы попадут в продукты, воду и окружающую среду, отравляя миллионы людей. Именно это считается самым главным минусом атомной энергетики на сегодняшний день.

Кроме того очень остро стоит проблема утилизации радиоактивных отходов, для сооружения могильников нужны большие территории, что является большой проблемой для маленьких стран. Несмотря на то, что отходы битумируются и скрываются за толщей железа и цемента, никто не может с точностью уверить всех в том, что они будут оставаться безопасными для людей много лет. Также не стоит забывать, что утилизация радиоактивных отходов очень дорого обходится, вследствие экономии затрат на остекловывание, сжигание, уплотнение и цементирование радиоактивных отходов, возможны их утечки. При стабильном финансировании и большой территории страны этой проблемы не существует, но этим может похвастаться не каждое государство.

Выводы

Хотя атомная энергетика остается источником загрязнения и возможных катастроф, все же следует отметить, что ее развитие будет происходить и дальше, хотя бы по той причине, что это дешевый способ получения энергии, а месторождения углеводородного топлива постепенно исчерпываются. В умелых руках атомная энергетика действительно может стать безопасным и экологически чистым способом добывания энергии, однако стоит все же отметить, что большинство катастроф произошло именно по вине человека.

В проблемах, касающихся утилизации радиоактивных отходов, очень важно международное сотрудничество, ведь только оно может дать достаточное финансирование для безопасного и долгосрочного захоронения радиационных отходов и использованного ядерного топлива.

Рекомендуем посмотреть интересный документальный фильм об атомной энергетике:

преимущества и недостатки ядерной энергетики они являются довольно распространенным спором в современном обществе, которое четко делится на два лагеря. Некоторые утверждают, что это надежная и дешевая энергия, в то время как другие предупреждают о бедствиях, которые могут привести к неправильному ее использованию..

Ядерная энергия или атомная энергия получается в процессе ядерного деления, которое состоит в бомбардировке атома урана нейтронами, так что он разделяется на два, выделяя большое количество тепла, которое затем используется для выработки электричества..


Первая атомная электростанция была открыта в 1956 году в Великобритании. Согласно Castells (2012), в 2000 году было 487 ядерных реакторов, которые производили четверть мирового электричества. В настоящее время на шесть стран (США, Франция, Япония, Германия, Россия и Южная Корея) приходится почти 75% ядерной энергетики (Fernández and González, 2015).

Многие люди думают, что атомная энергия очень опасна из-за известных аварий, таких как Чернобыль или Фукусима. Тем не менее, есть те, кто считает этот тип энергии "чистым", потому что он имеет очень мало выбросов парниковых газов.

  • 1 Преимущества
    • 1.1 Высокая плотность энергии
    • 1.2 Дешевле, чем ископаемое топливо
    • 1.3 Доступность
    • 1.4 Он выделяет меньше парниковых газов, чем ископаемое топливо
    • 1.5 Не хватает места
    • 1.6 генерирует мало отходов
    • 1.7 Технология все еще в разработке
    • 2.1 Уран является невозобновляемым ресурсом
    • 2.2 Не может заменить ископаемое топливо
    • 2.3 Зависит от ископаемого топлива
    • 2.4 Добыча урана вредна для окружающей среды
    • 2.5 Очень стойкие отходы
    • 2.6 Ядерные катастрофы
    • 2.7 Воинственное использование

    выгода


    Высокая плотность энергии

    Уран - это элемент, который обычно используется на атомных станциях для производства электроэнергии. Это свойство хранить огромное количество энергии.

    Один грамм урана равен 18 литрам бензина, а один килограмм дает примерно ту же энергию, что и 100 тонн угля (Castells, 2012).

    Дешевле, чем ископаемое топливо

    В принципе, стоимость урана, кажется, намного дороже, чем нефть или бензин, но если принять во внимание, что для выработки значительного количества энергии требуются лишь небольшие количества этого элемента, в конечном итоге стоимость становится ниже, чем это ископаемого топлива.

    доступность


    Атомная электростанция обладает способностью работать постоянно, 24 часа в сутки, 365 дней в году, чтобы снабжать город электричеством; это благодаря периоду заправки это каждый год или 6 месяцев в зависимости от завода.

    Другие виды энергии зависят от постоянного запаса топлива (например, угольные электростанции) или периодически или ограничены климатом (например, возобновляемые источники).

    Он выделяет меньше парниковых газов, чем ископаемое топливо


    Атомная энергия может помочь правительствам выполнить свои обязательства по сокращению выбросов парниковых газов. Процесс эксплуатации на атомной станции не выделяет парниковых газов, поскольку не требует использования ископаемого топлива..

    Тем не менее, выбросы происходят в течение всего жизненного цикла установки; строительство, эксплуатация, добыча и переработка урана и демонтаж АЭС. (Sovacool, 2008).

    Из наиболее важных исследований, проведенных для оценки количества CO2, выделяемого в результате ядерной деятельности, среднее значение составляет 66 г CO2e / кВтч. Это значение выбросов больше, чем у других возобновляемых ресурсов, но все же ниже, чем у ископаемых видов топлива (Sovacool, 2008).

    Не хватает места

    Атомной установке требуется мало места по сравнению с другими видами энергетической деятельности; для установки ректора и градирен требуется лишь относительно небольшой участок земли.

    Напротив, для деятельности в области ветровой и солнечной энергии потребовалась бы большая земля для производства той же энергии, что и для атомной электростанции, в течение всего срока ее полезного использования.

    Создает мало отходов

    Отходы, образующиеся на атомной электростанции, чрезвычайно опасны и вредны для окружающей среды. Тем не менее, количество относительно мало по сравнению с другими видами деятельности, и используются адекватные меры безопасности, которые могут оставаться изолированными от окружающей среды, не представляя никакого риска.

    Технология все еще в разработке

    Есть еще много нерешенных проблем, связанных с атомной энергией. Однако в дополнение к делению существует еще один процесс, называемый ядерным синтезом, который включает в себя соединение двух простых атомов вместе с образованием тяжелого атома..

    Развитие ядерного синтеза направлено на использование двух атомов водорода для производства одного из гелия и генерации энергии, это та же самая реакция, которая происходит на солнце.

    Для осуществления ядерного синтеза требуются очень высокие температуры и мощная система охлаждения, которая создает серьезные технические трудности и все еще находится на стадии разработки..

    В случае его реализации это будет означать более чистый источник, поскольку он не будет производить радиоактивные отходы, а также будет генерировать гораздо больше энергии, чем в настоящее время производится путем деления урана..

    недостатки


    Уран является невозобновляемым ресурсом

    Исторические данные из многих стран показывают, что в среднем не более 50-70% урана может быть извлечено в шахте, поскольку концентрации урана менее 0,01% более не являются жизнеспособными, поскольку для этого требуется перерабатывать большее количество урана. камни и используемая энергия больше, чем она может генерировать на заводе. Кроме того, добыча урана имеет период полураспада при извлечении из месторождения 10 ± 2 года (Dittmar, 2013).

    Dittmar предложил модель в 2013 году для всех существующих урановых рудников и планировал до 2030 года, в которой глобальный пик добычи урана 58 ± 4 тыс. Тонн получается около 2015 года, а затем снижается до максимума 54 ± 5 ​​тыс. Тонн. на 2025 год и максимум на 41 ± 5 ктонов около 2030 года.

    Этого количества больше не будет достаточно для питания существующих и планируемых атомных электростанций в течение следующих 10-20 лет (Рисунок 1).


    Не может заменить ископаемое топливо

    Ядерная энергетика сама по себе не представляет альтернативы нефтяному, газовому и угольному топливу, поскольку для замены 10 тераватио, которые генерируются в мире из ископаемого топлива, потребуется 10 тысяч атомных электростанций. На самом деле в мире всего 486.

    Строительство атомной электростанции требует больших вложений денег и времени, обычно от 5 до 10 лет от начала строительства до запуска, и очень часто задержки происходят на всех новых станциях (Циммерман , 1982).

    Кроме того, период эксплуатации является относительно коротким, приблизительно 30 или 40 лет, и для демонтажа установки требуются дополнительные инвестиции..

    Зависит от ископаемого топлива

    Перспективы, связанные с ядерной энергией, зависят от ископаемого топлива. Ядерный топливный цикл включает в себя не только процесс выработки электроэнергии на станции, но и включает в себя ряд мероприятий, которые варьируются от разведки и эксплуатации урановых рудников до вывода из эксплуатации и вывода из эксплуатации атомной станции..

    Добыча урана вредна для окружающей среды

    Добыча урана - это деятельность, которая очень вредна для окружающей среды, поскольку для получения 1 кг урана необходимо удалить более 190 000 кг земли (Fernández and González, 2015).

    В Соединенных Штатах ресурсы урана в обычных месторождениях, где уран является основным продуктом, оцениваются в 1 600 000 тонн субстрата, из которого они могут извлекаться, извлекая 250 000 тонн урана (Theobald, et al., 1972)

    Уран добывается на поверхности или в недрах, измельчается и затем выщелачивается в серную кислоту (Fthenakis and Kim, 2007). Образующиеся отходы загрязняют почву и воду места радиоактивными элементами и способствуют ухудшению окружающей среды..

    Уран несет значительные риски для здоровья работников, которые его добывают. В 1984 году Самет и его коллеги пришли к выводу, что добыча урана является более серьезным фактором риска развития рака легких, чем курение сигарет..

    Очень стойкие отходы

    Когда завод заканчивает свою деятельность, необходимо начать процесс демонтажа, чтобы гарантировать, что будущие виды использования земли не будут представлять радиологический риск для населения или для окружающей среды..

    Процесс демонтажа состоит из трех уровней, и для того, чтобы земля была свободной от загрязнения, требуется период около 110 лет. (Дорадо, 2008).

    В настоящее время существует около 140 000 тонн радиоактивных отходов без какого-либо надзора, которые были сброшены в период между 1949 и 1982 годами в Атлантическом желобе Великобританией, Бельгией, Голландией, Францией, Швейцарией, Швецией, Германией и Италией (Reinero, 2013, Fernández and González, 2015). Учитывая, что срок полезного использования урана составляет тысячи лет, это представляет риск для будущих поколений..

    Ядерные катастрофы

    Атомные электростанции построены со строгими стандартами безопасности, а их стены сделаны из бетона толщиной в несколько метров, чтобы изолировать радиоактивный материал снаружи.

    Однако невозможно сказать, что они на 100% безопасны. За прошедшие годы произошло несколько аварий, которые на сегодняшний день предполагают, что атомная энергия представляет риск для здоровья и безопасности населения..

    11 марта 2011 года произошло землетрясение силой 9 градусов по шкале Рихтера на восточном побережье Японии, вызвавшее разрушительное цунами. Это нанесло значительный ущерб атомной станции Фукусима-Дайичи, чьи реакторы серьезно пострадали.

    Последующие взрывы внутри реакторов выпустили продукты деления (радионуклиды) в атмосферу. Радионуклиды быстро связывались с атмосферными аэрозолями (Gaffney et al., 2004) и впоследствии путешествовали на большие расстояния по всему миру вместе с воздушными массами из-за большой циркуляции атмосферы. (Лозано и др., 2011).

    В дополнение к этому в океан попало большое количество радиоактивного материала, и по сей день завод в Фукусиме продолжает выпускать загрязненную воду (300 тонн в день) (Fernández and González, 2015).

    Авария на Чернобыльской АЭС произошла 26 апреля 1986 года во время оценки электрической системы управления завода. В результате этой катастрофы на 30 000 человек, живущих рядом с реактором, было облучено около 45 бэр каждый, примерно такой же уровень радиации, как и у выживших после взрыва бомбы в Хиросиме (Zehner, 2012).

    В начальный период после аварии наиболее значительными изотопами, выпущенными с биологической точки зрения, были радиоактивные йоды, в основном йод 131 и другие короткоживущие йодиды (132, 133)..

    Поглощение радиоактивного йода при проглатывании загрязненной пищи и воды и при вдыхании привело к серьезному внутреннему воздействию на щитовидную железу людей.

    В течение 4 лет после аварии медицинские осмотры выявили существенные изменения функционального состояния щитовидной железы у облученных детей, особенно детей в возрасте до 7 лет (Никифоров и Гнепп, 1994)..

    Воинственное использование

    Согласно Fernández and González (2015), очень трудно отделить гражданскую ядерную промышленность от военной, поскольку отходы атомных электростанций, такие как плутоний и обедненный уран, являются сырьем для производства ядерного оружия. Плутоний является основой атомных бомб, а уран используется в снарядах.

    Рост ядерной энергии увеличил способность стран получать уран для ядерного оружия. Хорошо известно, что одним из факторов, побуждающих несколько стран, не имеющих ядерно-энергетических программ, проявить интерес к этой энергии, является основание того, что такие программы могут помочь им в разработке ядерного оружия. (Джейкобсон и Делукки, 2011).

    Масштабное глобальное увеличение объектов ядерной энергетики может подвергнуть мир риску перед лицом возможной ядерной войны или террористической атаки. До настоящего времени разработка или попытка разработки ядерного оружия в таких странах, как Индия, Ирак и Северная Корея, осуществлялась тайно на объектах ядерной энергетики (Jacobson and Delucchi, 2011)..


    Все наслышаны о главном недостатке АЭС – о тяжелых последствиях аварий на атомных станциях. Десятки тысяч погибших и множество смертельно заболевших людей, мощное радиационное облучение, влияющее на здоровье человека и его потомков, города, ставшие непригодными для жизни… список, к сожалению, можно продолжать бесконечно. Хвала небесам, что случаи аварий единичны, подавляющее большинство атомных станций мира успешно работают десятилетиями, ни разу не сталкиваясь со сбоями системы.

    Сегодня атомная энергетика – это одно из самых быстро развивающихся направлений в мировой науке. Попытаемся отойти от устойчивого мифа о том, что атомные станции – это опасность ядерных катастроф и узнать про достоинства и недостатки АЭС как источников электроэнергии. В чем атомные станции превосходят тепловые и гидроэлектростанции? Каковы преимущества и недостатки АЭС? Стоит ли развивать это направление добычи электричества? Обо всем этом и не только…

    Современные способы получения электроэнергии

    Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.

    Генерация – это процесс преобразования различных видов энергии в электрическую. Процесс генерации происходит в электрических станциях. Сегодня существует множество видов генерации.

    how-to-save-electricity

    Получить электроэнергию сегодня можно следующими способами:

    gidro

    Недостатки альтернативных источников энергии

    Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

    Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

    Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

    Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

    jadernaja

    Атомная энергетика сегодня

    По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

    В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

    Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

    Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

    tes2

    Преимущества АЭС перед ТЭС

    Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

    ТЭС, то есть теплоэлектростанции бывают двух видов:

    1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
      2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

    Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

    АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

    Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

    Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

    1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
      2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
      3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

    Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

    Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

    tes

    Недостатки АЭС перед ТЭС

    1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
      2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
      3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

    Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

    Преимущества и недостатки АЭС перед ГЭС

    Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

    1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
      2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

    vzriv_aes

    АЭС: преимущества и недостатки

    Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

    По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

    Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

    Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

    Аварии на АЭС

    Ранее мы не упомянули только основные недостатки АЭС, которые всем известны – это последствия возможных аварий. Аварии на АЭС классифицируются по шкале INES, которая имеет 7 уровней. Опасность облучения для населения представляют аварии 4го уровня и выше.

    Только две аварии в истории оценены по максимальному 7му уровню – Чернобыльская катастрофа и авария на АЭС Фукусима 1. Одну аварию посчитали 6м уровнем, это Кыштымская авария, которая произошла в 1957 году на химкомбинате «Маяк» в Челябинской области.

    Безусловно, имеющиеся у АЭС преимущества и недостатки меркнут по сравнению с возможностью ядерных катастроф, уносящих жизни множества людей. Но достоинства АЭС сегодня – это усовершенствованная система безопасности, которая практически полностью исключает возможность аварий, т.к. алгоритм работы атомных реакторов компьютеризирован и с помощью компьютеров реакторы отключаются в случае минимальных нарушений.

    Имеющиеся у АЭС преимущества и недостатки учитывают при разработке новых моделей атомных станций, которые будут работать на переработанном ядерном топливе и уране, залежи которого ранее в работу не вводились.

    Это значит, что основные преимущества АЭС сегодня – это перспективность их модернизации, улучшения и новых изобретений в этой области. Думается, что самые главные достоинства АЭС откроются чуть позже, надеемся, что наука не будет стоять на месте, и совсем скоро мы о них узнаем.


    Все наслышаны о главном недостатке АЭС – о тяжелых последствиях аварий на атомных станциях. Десятки тысяч погибших и множество смертельно заболевших людей, мощное радиационное облучение, влияющее на здоровье человека и его потомков, города, ставшие непригодными для жизни… список, к сожалению, можно продолжать бесконечно. Хвала небесам, что случаи аварий единичны, подавляющее большинство атомных станций мира успешно работают десятилетиями, ни разу не сталкиваясь со сбоями системы.

    Сегодня атомная энергетика – это одно из самых быстро развивающихся направлений в мировой науке. Попытаемся отойти от устойчивого мифа о том, что атомные станции – это опасность ядерных катастроф и узнать про достоинства и недостатки АЭС как источников электроэнергии. В чем атомные станции превосходят тепловые и гидроэлектростанции? Каковы преимущества и недостатки АЭС? Стоит ли развивать это направление добычи электричества? Обо всем этом и не только…

    Современные способы получения электроэнергии

    Вы знали, что получить электричество можно с помощью обычной картошки, лимона или комнатного цветка? Понадобятся лишь гвоздь и медная проволока. Но снабдить электроэнергией весь мир картошка и лимоны, конечно, не смогут. Поэтому с 19 века ученые начали осваивать методы получения электроэнергии с помощью генерации.

    Генерация – это процесс преобразования различных видов энергии в электрическую. Процесс генерации происходит в электрических станциях. Сегодня существует множество видов генерации.

    how-to-save-electricity

    Получить электроэнергию сегодня можно следующими способами:

    gidro

    Недостатки альтернативных источников энергии

    Атомные, гидро и тепловые электростанции являются основными источниками получения электроэнергии в современном мире. Каковы достоинства АЭС, ГЭС и ТЭС? Почему нас не греет энергия ветра или энергия морских приливов? Чем ученым не угодил водород или естественное тепло Земли? На то есть свои причины.

    Энергии ветра и солнца и морских приливов принято называть альтернативными из-за их редкого использования и совсем недавнего появления. А еще из-за того, что ветер, солнце, море и тепло Земли возобновляемы, и то, что человек воспользуется солнечным теплом или морским приливом никакого вреда ни солнцу ни приливу не принесет. Но не спешите бежать и ловить волны, не все так легко и радужно.

    Геотермальная энергетика – сложный процесс, т.к. строить электрические станции можно только в зонах тектонической активности, где из-под земли можно «выжать» максимум тепла. Много ли мест с вулканами вы знаете? Вот и ученые немного. Поэтому геотермальная энергетика, скорее всего, так и останется узконаправленной и не особо работоспособной.

    Водородная энергетика наиболее перспективна. Водород имеет очень высокий КПД сгорания и его сжигание абсолютно экологически чисто, т.к. продукт сгорания – дистиллированная вода. Но, есть одно но. Стоит процесс производства чистого водорода невероятно больших денег. Вы хотите платить миллионы за свет и горячую воду? Никто не хочет. Ждем, надеемся и верим, что в скором времени ученые найдут способ сделать водородную энергетику более доступной.

    jadernaja

    Атомная энергетика сегодня

    По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

    В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

    Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

    Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

    tes2

    Преимущества АЭС перед ТЭС

    Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

    ТЭС, то есть теплоэлектростанции бывают двух видов:

    1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
      2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

    Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

    АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

    Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

    Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

    1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
      2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
      3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

    Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

    Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

    tes

    Недостатки АЭС перед ТЭС

    1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
      2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
      3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

    Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

    Преимущества и недостатки АЭС перед ГЭС

    Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

    1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
      2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

    vzriv_aes

    АЭС: преимущества и недостатки

    Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

    По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

    Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

    Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

    Аварии на АЭС

    Ранее мы не упомянули только основные недостатки АЭС, которые всем известны – это последствия возможных аварий. Аварии на АЭС классифицируются по шкале INES, которая имеет 7 уровней. Опасность облучения для населения представляют аварии 4го уровня и выше.

    Только две аварии в истории оценены по максимальному 7му уровню – Чернобыльская катастрофа и авария на АЭС Фукусима 1. Одну аварию посчитали 6м уровнем, это Кыштымская авария, которая произошла в 1957 году на химкомбинате «Маяк» в Челябинской области.

    Безусловно, имеющиеся у АЭС преимущества и недостатки меркнут по сравнению с возможностью ядерных катастроф, уносящих жизни множества людей. Но достоинства АЭС сегодня – это усовершенствованная система безопасности, которая практически полностью исключает возможность аварий, т.к. алгоритм работы атомных реакторов компьютеризирован и с помощью компьютеров реакторы отключаются в случае минимальных нарушений.

    Имеющиеся у АЭС преимущества и недостатки учитывают при разработке новых моделей атомных станций, которые будут работать на переработанном ядерном топливе и уране, залежи которого ранее в работу не вводились.

    Это значит, что основные преимущества АЭС сегодня – это перспективность их модернизации, улучшения и новых изобретений в этой области. Думается, что самые главные достоинства АЭС откроются чуть позже, надеемся, что наука не будет стоять на месте, и совсем скоро мы о них узнаем.

    Image: Каковы плюсы и минусы атомной энергии?

    Никакие другие источники энергии не в состоянии произвести достаточное количество электричества. Его мировое потребление с 1990 по 2008 год выросло на 39 % и ежегодно увеличивается. Солнечная энергия не может удовлетворить индустриальные потребности в электричестве. Запасы нефти и угля истощаются. На 2016 год в мире функционировал 451 ядерный энергоблок. Суммарно энергоблоки выработали 10,7 % мирового объема генерации электричества. 20 % всей электроэнергии, вырабатываемой в России, производят атомные станции.


    1 кг урана, обогащенный до 4 %, выделяет количество энергии, эквивалентное сжиганию 60 тонн нефти или 100 тонн угля.


    С момента строительства первых атомных объектов произошло около трех десятков аварий, в четырех случаях произошел выброс вредных веществ в атмосферу. Число происшествий, связанных со взрывом метана на угольных шахтах, исчисляется десятками. Из-за устаревшего оборудования число аварий на ТЭС увеличивается с каждым годом. Последняя крупная авария в России произошла в 2016 году на Сахалине. Тогда без света остались 20 тысяч россиян. Взрыв в 2013 году на Углегорской ТЭС (Донецкая область, Украина) спровоцировал пожар, который не могли потушить в течение 15 часов. В атмосферу было выброшено большое количество токсичных веществ.

    Запасы природного топлива истощаются. Остатки угля и нефти оцениваются в 0,4 ИДж (1 ИДж = 10 24 Дж). Запасы урана превышают 2,5 ИДж. К тому же, уран может использоваться повторно. Ядерное топливо легко перевозить, расходы на транспортировку минимальны.


    В 2013 году мировые выбросы от использования ископаемого топлива для получения электричества составили 32 гигатонны. Сюда входят углеводороды и альдегиды, сернистый газ, оксиды азота. АЭС не потребляет кислород, ТЭС же использует кислород для окисления топлива и производит сотни тысяч тонн золы в год. Выбросы на АЭС происходят в редких случаях. Побочным эффектом их деятельности является эмиссия радионуклидов, которые распадаются в течение нескольких часов.

    "Парниковый эффект" стимулирует страны ограничивать объемы сжигания угля и нефти. Атомные электростанции Европы ежегодно снижают эмиссию СО2 на 700 миллионов тонн.


    Строительство АЭС создает рабочие места на станции и в сопутствующих отраслях. Ленинградская АЭС, к примеру, обеспечивает локальные промышленные предприятия отоплением и горячей технической водой. Станция является источником медицинского кислорода для медучреждений и жидкого азота для предприятий. Гидротехнический цех поставляет потребителям питьевую воду. Объем производства энергии АЭС напрямую связан с ростом благосостояния района.


    Отработанное ядерное топливо - источник энергии. Радиоактивные отходы составляют 5 % отработанного топлива. Из 50 кг отходов всего 2 кг нуждаются в длительном хранении и требуют серьезной изоляции.

    Радиоактивные вещества смешивают с жидким стеклом и заливают в контейнеры с толстыми стенами из легированной стали. Железные контейнеры готовы обеспечить надежное хранение опасных веществ на протяжении 200-300 лет.

    АЭС жизненно необходимы в труднодоступных районах Дальнего Востока и Крайнего Севера, но строительство стационарных станций экономически не оправдано в малонаселенных территориях. Выходом станет использование малых плавучих атомных тепловых станций. Первую в мире ПАТЭС "Академик Ломоносов" запустят осенью 2019 года на побережье Чукотского полуострова в Певеке. Строительство плавучего энергоблока (ПЭБ) ведется на Балтийском заводе Санкт-Петербурга. Всего планируется к 2020 году запустить в эксплуатацию 7 ПАТЭС. В числе плюсов использования плавучих АЭС:

    Читайте также: